Shelton, who retired in 2014 after 38 years in the Air Force, lives not far from 2Sops in Colorado; these days he chairs an educational and advocacy nonprofit called the Space Foundation. He still expends a lot of energy worrying about what is happening in the heavens. “We as a nation have been too slow to respond to this threat,” he says. He’s particularly troubled by the failure of the US to procure new space systems. Some GPS satellites are older than the people running them. “Our systems are archaic,” Shelton says. “Because space assets are so expensive, we deploy ‘just enough’; there’s no backup or excess capability.” (The Air Force noted that the GPS constellation consists of more than 30 satellites, which provides some redundancy.)
China, by contrast, is investing heavily in its space program, seeing it as a symbol of its growing prominence. As soon as this year, it could land a craft on the never-before-touched far side of the moon. And China’s global navigation satellite system, known as BeiDou, has some capabilities that outmatch even the United States’ GPS. In 2015, China created a new space-focused military service, known as the People’s Liberation Army Strategic Support Force. Meanwhile, the US relies entirely on Russian rockets to get its astronauts to the Space Station (although NASA has awarded contracts to Boeing and SpaceX to fix that). As Cheng says, “Today China is one of two countries that can put a person into space—and the other country isn’t the United States.”
Many of America’s space warriors, as they call themselves, share Shelton’s sense that the US isn’t responding nearly quickly enough to the threat of orbital war. “We needed to be marching faster,” says Deborah Lee James, who served as President Obama’s secretary of the Air Force. “Why aren’t there more space and cyber officers at the top of the Air Force?”
Deadly Debris
In orbit, trash becomes shrapnel. When objects in space collide—whether by accident or because, say, someone down on Earth has decided to launch a missile at a satellite—it sometimes creates a hail of smaller fragments that fan out across Earth’s orbit. It’s already getting difficult to operate satellites and conduct launches amid all the junk zipping around up there. That’s why, around the world, scientists and engineers are devising ways to pull space junk out of orbit. In April, a SpaceX rocket carried a collection of experimental debris-removal technologies to the International Space Station. During its time in orbit, the satellite will test out nets, harpoons, and drag sails designed to reduce detritus.
— Saraswati Rathod
20,000
Pieces of space debris larger than a softball
—
500,000
Pieces of debris the size of a marble or larger
—
4,300
Number of satellites in space
—
72
Percent of satellites that are nonfunctioning
—
$1.4 billion
Cost of degradation to commercial satellites caused by debris
—
2,000
Number of trackable fragments created by the last major satellite collision in 2009
—
160 million
Estimated number of pieces of space junk too small to be tracked
—
Sources: European Space Agency; NASA; Aerospace Corporation
Addressing these issues, as James’ question suggests, is not just about throwing money at the space-industrial complex. It involves organizational changes too. The Air Force is building what it calls the nation’s first Space Mission Force, made up of airmen trained to respond to the demands of an orbital war. On the same base as the 2Sops command center, the military has established the National Space Defense Center, which puts representatives from various military and intelligence offices focused on space under a single roof. And the defense authorization bill is full of upgrades to the Air Force’s space-fighting capabilities, including the creation of an additional Air Force unit responsible for space warfighting operations.
Not content to tinker with the Air Force, a growing number of people in Washington—including the commander in chief—have to come to favor creating an entire new military branch dedicated to space operations. In May, during a ceremony honoring West Point’s football team, President Trump told his audience, “We’re getting very big in space, both militarily and for other reasons, and we are seriously thinking of the Space Force.” The comment sounded to many listeners like yet another oddball Trumpian tangent.
But then, after reportedly meeting resistance from the Air Force, Trump escalated. At a mid-June meeting of the newly constituted US Space Council, he announced—much to the surprise of his own advisors and the military itself—that he was ordering the Pentagon to move forward. As he said, “I’m hereby directing the Department of Defense and Pentagon to immediately begin the process necessary to establish a Space Force as the sixth branch of the Armed Forces. That’s a big statement. We are going to have the Air Force and we are going to have the Space Force—separate but equal. It’s going to be something.”
The Space Force is, of course, not a fait accompli. Any military reorganization has to be approved by Congress—which is not necessarily an easy path. (Last year, a bill that included the creation of just such a new branch of the military passed the US House of Representatives, but that provision was taken out of the Senate version.) And the establishment of a new branch of the military involves a vast set of logistical and structural questions.
Yet Trump’s push may speed up a natural evolution toward an independent space branch by years, if not a decade. Space, the president said, was “going to be important monetarily and militarily. We don’t want China and Russia and other countries leading us. We’ve always led.”
But where—and to what—are we leading? Part of the challenge in figuring out how to think about space conflict is the sheer complexity of the orbital environment—an arena that has long belonged to nation-states, but that is increasingly becoming a domain of commerce and tourism. How do countries protect their interests up above—and down here? Right now, countries appear to be racing to build their military capabilities—but an arms race isn’t the only answer.
The last time an arms race appeared poised to overtake space, the world’s superpowers banded together to sign the 1967 Outer Space Treaty, which banned weapons of mass destruction in space and held that “the moon and other celestial bodies” should be reserved for peaceful purposes. The Outer Space Treaty is still in force, but it is by now full of holes. Legal scholars had a hard time proving that China’s 2007 anti-satellite test, for instance, violated the agreement. That’s because the missile that China fired was not technically addressed in the 50-year-old treaty.
Part of what makes space such volatile terrain right now is that it’s hard even to apply the existing laws of war to it. No country can claim sovereignty in orbit, and it’s impossible to occupy territory there. So what counts as an act of territorial aggression? What qualifies as a proportional response? It’s even difficult to say, with certainty, what the physics of war in space will look like. We don’t well understand, for instance, how a kinetic attack on a satellite constellation might spill over into a spiraling Kessler effect.
Humans have “millennia of experience in blowing up things on land,” says Laurie Blank, a law professor at Emory University and a specialist in the laws of armed conflict. “We’re still learning the consequences of all these things in space.”
Blank recently joined together with an international team of legal experts to create what they’re calling the Woomera Manual on the International Law of Military Space Operations—a kind of rule book for celestial international conflict, one that will endeavor to translate the laws of terrestrial war for space. It’s a daunting task, and the resulting document will be nonbinding. But, Blank says, it’s a necessary first step for anyone who would seek to contain a conflict that has, in some senses, already begun.
Garrett M. Graff(@vermontgmg) is a WIRED contributing editor. He wrote about US special counsel Robert Mueller’s combat experience during the Vietnam War for issue 26.06.
This article appears in the July issue. Subscribe now.
Listen to this story, and other WIRED features, on the Audm app.
More Great WIRED Stories
- Inside Palmer Luckey’s bid to build a border wall
- The bike share war is shaking up Seattle like nowhere else
- The perverse incentives that help incels thrive in tech
- AI made a movie—and it’s horrifyingly encouraging
- Here are the best Mac alternatives for Windows users
- Looking for more? Sign up for our daily newsletter and never miss our latest and greatest stories