The Stanford Laptop Orchestra meets to rehearse every Wednesday night in the spring from 7:30 to 10:30 pm (The late hours are a remnant of Wang’s night-owl habits as a graduate student.) It’s a for-credit course at Stanford—Music 128, cross-listed in the computer science department as CS 170—but getting in isn’t easy. The group of 15 students includes those with computer science credentials, and those with more traditional music backgrounds, but neither is enough to become a great laptop orchestra player. The most important thing is curiosity. “We’re unified by this interest to make music together with computers,” says Wang, “and to figure out what that means.”
Wang likes to call SLOrk a kitchen of sound. “We can go to a restaurant, order delicious food, and enjoy that,” he says. “But there’s a special joy in going back into the kitchen with raw ingredients and being able to concoct your own dish. The process of making—and eating—your own creation carries with it its own satisfaction.”
Every orchestra member gets a MacBook, propped up on an Ikea breakfast tray, with a meditation pillow beside it.
In the ten years that SLOrk has existed, it’s composed over 200 original works and created almost as many new instruments. Most of these works have little in common, but they all start with the same set-up: Every orchestra member gets a MacBook, propped up on an Ikea breakfast tray, with a meditation pillow beside it. The laptop connects to a homespun hemispherical speaker, made by adding car speaker drivers and high-efficiency amplifiers to Ikea salad bowls. (From far away, they look a bit like Minions.) Wang created the speakers during the first year of SLOrk, with an aim to add an acoustic element to an otherwise machine-heavy ensemble. “We want the computer instruments to seem more like acoustic instruments where the sound isn’t coming from a PA system around you but from the artifact itself,” he says. While the MacBooks and cables have been replaced a few times, the hemispherical speakers are the same ones SLOrk used ten years ago.
Every station also includes a GameTrak, a game controller with a retractable cable. GameTraks were originally used in golf simulation video games, where they could turn someone’s virtual golf swing into data points. It was a commercial flop, but computer music researchers immediately saw the appeal. “We bought no less than 100 of them at massively discounted prices,” says Wang.
The device maps movement in three-dimensional space. For a laptop orchestra, that means turning fluid movement into sound value. “It opens up the infinite space of human music, and the dancelike qualities of musical performance,” says Matt Wright, a longtime SLOrkian and one of the orchestra’s instructors. “You can put one in someone’s hands and say, ‘Here. Make an instrument out of this.'”
In past performances the ensemble has used GameTraks to operate video-games that translate into melodic compositions, or finger-plucked the cable like a traditional string instrument. One composition in SLOrk’s upcoming show introduces a new instrument, created by hanging GameTraks upside down on a beam and weighting them with various wooden blocks. Performers push them like swings on a playground to create the song. The performance is wildly playful, like watching kids on a playground discover the delightful sounds of their own laughter for the first time.
One student used a face-tracking program called FaceOSC to turn facial movements into sound.
During the SLOrk term, each student creates their own instruments, composes their own scores, and performs them with the class. There are virtually no rules, other than the limits of imagination and programmability. One student, Kunwoo Kim, used a face-tracking program called FaceOSC to turn facial movements into sound. He and fellow SLOrk member Avery Bick stared into their laptop web cams while opening their eyes wide, or raising their eyebrows, or stretching their mouth to scream, to control the pitch and tempo of the face-tracking instrument.
“Using a face as a controller was a very interesting concept for us,” he says. “We wanted to deliver a human message that uses human parameters.”
Kim came to Stanford after earning a bachelor’s in mechanical engineering and a master’s in electrical engineering. He joined CCRMA because he wanted an interdisciplinary program that would let him continue engineering while also studying music; when he heard about SLOrk, he figured he’d give it a shot.
“I had no idea what was going on,” he says about his first day in the orchestra.
Soon, though, things started to click—and Kim found something in SLOrk that he’d never found before in his engineering coursework. The point of SLOrk isn’t to have a direction. It’s to find a direction.
“The engineering that I have been doing was about solving problems,” says Kim. “But in SLOrk, there’s no problem to solve. We try to cover more of the sentimental side of human beings. And I think that’s very interesting. You’re actually trying to say something about humanity through the computers.”